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ABSTRACT
Cancer robustness is generated by the positive feedback loops. The positive loops hyperactivate AKT locus forming a cancer phenotype in
leukemia, lymphoma, myeloma, plasmocytoma, sarcoma and carcinoma. The positive loops inducing AKT hyperphosphorylation increase
activity of the AKT locus and the nodal associated and interconnected signaling genes. Only genes expressed above the threshold in the AKT
signaling interactome networks, participate in the formation of the complex cancer phenotype. AKT is the switching locus for the cancer
phenotype. The phenotype formation andmaintenance is regulated by the AKT locus through an entropy/enthalpy processes. Targeting the AKT
by locus chemotherapy, changing redox balance (antioxidant/oxidant), affects phosphorylation and activity of the AKT, inducing conversion of
the positive feedback loops and disappearance of the malignant phenotype. J. Cell. Biochem. 116: 1–5, 2015. © 2014 Wiley Periodicals, Inc.
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A cancer as a complex and a robust system expresses extreme
robustness in relapsed leukemia, myeloma, plasmocytoma,

lymphoma, sarcoma, and metastatic carcinoma. A powerful signaling
interactome governs the formation of the powerful phenotype through
theAKT locus. The phenotype is createdby thepositive feedback loops,
generated in the hypoxic microenvironment [Radisavljevic, 2004a;
2008, 2013a,b,c]. Cancer robustness can fail successfully by targeting
AKT locus by the antioxidant/oxidant balance change. AKT locus is
the dynamic locus of cancer phenotype. The AKT locus integrates
genomic, signaling, and metabolic phenotype of cancer cell
[Radisavljevic, 2004a, 2008, 2013a,b,c]. Energy machinery of cancer
is themost important for the cancer cell survival. Energymetabolism is
regulated through the AKT locus in cancer cell [Kim et al., 2007]. A
cancer microenvironment is represented by the hypoxia and lactic
acidosis linked to the clinical tumor phenotypes, increased glucose
consumption and lactate production [Chen et al., 2008]. The main
phenotypic property of the primary and metastatic cancers is
upregulation of glycolysis documented by clinical tumor imaging
[Gatenby and Gillies, 2004]. When complex cancer system achieves
extreme robustness in relapsed leukemia, myeloma, plasmocytoma,
lymphoma, sarcoma, or metastatic carcinoma [Radisavljevic, 2013b]
cancer phenotype is fully developed.

AKT LOCUS OF CANCER PHENOTYPE

An activating signals from a cancer hypoxic microenvironment
hyperphosphorilate theAKT (serine/threoninekinaseorproteinkinase-

B, AKT/PKB) and creating positive feedback loops, induce formation of
the system with extreme robustness [Radisavljevic, 2004a, 2008,
2013a,b,c]. Such as system has increased cell proliferation, cell
migration, angiogenesis, and extreme cancer robustness [Radisavl-
jevic, 2004a,b, 2008, 2013a,b,c] with the property of the powerful
interactome for the cancer multidrug-resistant phenotype
[Radisavljevic, 2013c]. The system of the extreme robustness then
forms metabolic phenotype and modulates morphological phenotype.
That system depends on the number of activated genes that participate
in the cancer phenotype formation. Autocrine and paracrine elements
from the cancer hypoxic microenvironment generate genomic
phenotype, which acting through the signaling phenotype during
the formation of the cancer phenotype. A cancer signaling phenotype
involves signaling pathways for the cell proliferation such as the NOS/
NO/Rb, AKT/Rb pathway [Radisavljevic, 2004b; Imai et al., 2014], the
PI3K/AKT/mTOR/RAN and Cdk2/NuMA pathway [Radisavljevic and
Gonzalez-Flecha, 2003, 2004], then cell migration and angiogenesis
pathway the VEGF/PI3K/AKT/NOS/NO/ICAM-1 [Radisavljevic
et al., 2000], and cell apoptosis pathway regulated by the FOXO3A
[Radisavljevic, 2003]. All these pathways are integrated in one
signaling network where AKT locus is regulatory locus for the
formation of the caner phenotype.

A cancer hypoxic microenvironment generates property of the
phenotype. Autocrine and paracrine elements from cancer hypoxic
microenvironment activate powerful signaling through the AKT
locus forming a cancer phenotype. Autostream, downstream,
upstream, and rebound activating signals generate positive feedback
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loops that hyperactivate the AKT locus, producing a cancer extreme
robustness and forming a cancer phenotype [Radisavljevic, 2013b].
AKT autostream signals generate autostream positive feedback loops
which are short positive feedback loops like the autocrine
phenomenon. AKT directly interacts with other element and getting
back signals which increase its own activity, increasing own
phosphorylation. Such signaling loops are autostream positive
feedback loops and they are developed by the activated AKT locus
[Radisavljevic, 2013b]. ActivatedAKT locus increasesATP generation
through the aerobic glycolysis [Gottlob et al., 2001; Hahn-Wind-
gassen et al., 2005], which hyper phosphorylates and activates back
the AKT locus [Wang et al., 2014], closing the positive feedback loop
[Radisavljevic, 2013b]. Same phenomenon exists in fatty acid
(palmitic acid) stimulation of the AKT, presented by the Pu
et al. 2011, where activated AKT by the fatty acids stimulates back
fatty acid synthesis [Furuta et al., 2008], closing the positive feedback
loop [Radisavljevic, 2013b]. Short and wide positive feedback loops
togetherwith autostreampositive feedback loops hyperphosphorylate
and hyperactivate AKT locus [Radisavljevic, 2013b]. Powerful signals
from the positive feedback loops also activate surrounding and in
network connected genes in signaling AKT interactome. Those genes,
whose expression is above activating threshold, generate a cancer
phenotype in leukemia, myeloma, plasmocytoma, lymphoma,
sarcoma, and carcinoma. Rest of the genes whose expression is
below threshold do not participate in formation of the cancer
phenotype and those genes just oscillate in their expression without
any impact on the signaling interactome on surrounding and
connected genes. If the AKT locus is hyperstimulated, more
interconnected genes in signaling interactome are expressed above
their activating threshold and theywill participate in generationof the
cancer phenotype. These genes are incorporated in the signaling
interactome through their genomic node and participate in the
formation of cancer phenotype by adding their properties into
the cancer phenotype. That is the reason of existence of so much
diverse cancer phenotypes even in the same type of the malignancy,
because each additional activated gene participates in formation of
cancer phenotype with its own properties (Fig. 1). Positive feedback
loops through the AKT locus create variable signaling, which depends
on the number of the genes involved in phenotype formation that
generate different cancer phenotypes. The level of AKT hyper-
stimulation determinates cancer phenotypic properties. The AKT
networks of the connected and interactive genes with expression
above critical threshold make impact on the caner phenotype.

A cancer microenvironment is represented by the hypoxia and
lactic acidosis [Chen et al., 2008]. Lactic acidosis inhibits AKT and
glycolysis in cancer cells. That can diminish adaptive shift to
anaerobic glycolysis under hypoxia [Graham et al., 2004]. Phenom-
enon of glycolysis in the presence of oxygen is called aerobic
glycolysis or Warburg effect [Gatenby and Gillies, 2004]. Glycolysis
generates acetyl-coenzyme A (acetyl-CoA) for the tricarboxylic acid
cycle (TCA cycle) or Krebs cycle or citric acid cycle, but reduction of
glycolysis in cancer lactic acidosis decreases amount of acetyl-CoA
[Chen et al., 2008]. AKT in normal cells suppress beta-oxidation
[Elstrom et al., 2004; Buzzai et al., 2005], but lactic acidosis inhibits
the AKT, leading to the increase of beta-oxidation of fatty acid that
compensates increased demand for acetyl-CoA in cancer [Chen

et al., 2008]. Also, fatty acid synthase (FAS) gene is upregulated by
hypoxia through the AKT activation [Furuta et al., 2008]. AKT/
mTOR signaling has crucial role in development of the sarcoma
phenotype [Hernando et al., 2007]. AKT signaling is activated in
acute leukemia [Martelli et al., 2006] and chronic leukemia
phenotype formation [Longo et al., 2008]. Also, genomic mutation
change in chronic lymphocytic leukemia [Wang et al., 2011] and
point mutations in myelodysplastic syndromes [Bejar et al., 2011]
participate in cancer phenotype formation. All these processes
show how cancer cells shift their complex metabolic pathways to
adapt to hypoxia and acidosis to be able to maintain ability of
cancer progression by the cell proliferation, migration, and
angiogenesis through the AKT locus [Radisavljevic et al., 2000;
Radisavljevic, 2004a,b, 2008, 2013a,b,c].

A switch from mitochondrial oxidative phosphorylation to the
aerobic glycolysis in cancer is an adaptation to intermittent hypoxia
[Gatenby andGillies, 2004].A cancer phenotypehasglycolytic energy
production in the presence or absence of oxygen (aerobic glycolysis)
[Robey and Hay, 2009]. This metabolic phenotype supports cancer

Fig. 1. AKT as locus in interactome networks of cancer phenotype formation.
Phosphorylated AKT (pAKT) is the switching locus of a cancer phenotype
formation. Signaling pathways from the AKT locus to the signaling nodes
ICAM1 and RAN, or RB, FOXO3A through the NOS and mTOR are the main
signaling routes for cancer cells proliferation, migration, angiogenesis, and
apoptosis. Activity of the AKT locus is supported and maintained by the ATP
from glycolysis, lipolysis, or proteolysis. An autocrine and paracrine elements
such as: the vascular endothelial growth factor-VEGF, hypoxia-inducible
factor-1 alpha-HIF-1 alpha, hepatocyte growth factor-HGF, and molecules
nitric oxide and H2O2 from cancer hypoxic microenvironment generate positive
feedback loops, which hyperphosphorylate and hyperactivate the AKT, a
switching locus for aerobic glycolysis, lipolysis and proteolysis, generating ATP,
which then activates back AKT by phosporylation, closing autostream positive
feedback loop. Downstream, autostream, rebound and upstream signals create
short and wide positive feedback loops for hyperactivation of the AKT. If AKT
hyperactivation is higher more genes related directly (A) to AKT or indirectly
through the signaling nodes ICAM1 or RAN (B, C) or other associated and
interconnected genes in networks interactome (D, E, F, G) will be expressed
above their thresholds, and they will participate in cancer phenotype formation
with their properties.
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survival and growth in hypoxic tumor microenvironments [Kim and
Dang, 2006]. This cancer biochemical property was used for the 18F-
fluorodeoxyglucose positron emission tomography (18F-FDG PET
scan) to define clinically a stage of metastatic cancers and activity of
malignant phenotype [Smith, 2001; Gatenby and Gillies, 2004].
Increased glucose uptake imaged by the 18F-FDG PET/CT scan,
depends on the rate of glycolysis in a cancer and is regulated by the
upregulated glucose transporters GLUT1, GLUT3, and hexokinases I
and II [Burt et al., 2001; Bos et al., 2002; Gatenby and Gillies, 2004].

Oxygen consumption is the basic process in normal and
pathologic condition, which is regulated through the cell receptors
[Radisavljevic, 1991]. Normal as well cancer cells use oxygen for
energy production through mitochondrial oxidative phosphoryla-
tion [Hochachka, 1998; Kim et al., 2007]. Oxygen consumption is
elevatedwhenAKT is activated [Nogueira et al., 2008]. AKT regulates
energy metabolism [Gottlob et al., 2001; Hahn-Windgassen
et al., 2005]. AKT activation increases total cellular ATP content
through both glycolysis and oxidative phosphorylation [Gottlob
et al., 2001; Hahn-Windgassen et al., 2005]. AKT indirectly promotes
oxidative phosphorylation via increased glycolysis-derived sub-
strates pyruvate, ADP, and NADH which are essential for the TCA
cycle [Gottlob et al., 2001].

A cancer cell becomes highly glycolytic and use aerobic glycolysis
(Warburg effect) to produce lactate that will be converted to
pyruvate, which enters TCA cycle to generate adenosine triphos-
phate (ATP) and NADH, a reducing agent that is used for reaction
with pyruvate to generate lactate. In cancer cells, pyruvate is
converted to lactate 85% during aerobic glycolysis, which is
exported from the cell, and then is converted to pyruvate again
(reverse process) to enter citric acid cycle for energy generation, an
ATP production. Aerobic glycolysis looks like inefficient, loosing
ATP, that some authors proposed [Gatenby and Gillies, 2004], but in
the reality cancer switch to high energy production. A cancer energy
production is crucial in cancer adaptation to aerobic glycolysis
to produce lactate, a metabolite that is reversely converted to the
pyruvate, which will be oxidatively decarboxylated to form acetyl-
CoA to enter TCA cycle, or citric acid cycle (Krebs cycle) to generate
much more NADH and ATP. By doing that, a reverse conversion of
lactate to pyruvate, a cancer cells instead, that looks like lost 38
molecule of ATP per glucose (36 ATP molecules from pyruvate
entering mitochondria plus 2 ATP from glucose-6-phosphate—G6P;
also, cells generate 437 ATP molecule from fat), generate many folds
higher amount of ATP then normal cells. Two moles of NADH are
produced per mole of glucose, and TCA cycle generates 4molecule of
NADH plus one from conversion of pyruvate to acetyl-CoA. For
lactate production from pyruvate in aerobic glycolysis NADH is
required, where the NADH is oxidized to NAD. Pentose phosphate
pathway (hexose monophosphate pathway, or phosphogluconate
pathway) (10% of glucose) produces the NADPH in cytosol, a
reduced sources for the fatty acid synthesis with acetyl-CoA and
malonyl-CoA [McGilvery and Goldstein, 1983; Mathews and
Holde, 1989]. Lipid depletion is commonly associated with human
cancers, where free fatty acid is mobilized from adipose tissue. When
tumor mass is increased to 4% of body weight, basal lipolysis is
increased 2–3 times in adipose tissue [Kralovic et al., 1977]. Recently
was shown that the enzyme monoacylglycerol lipase (MAGL)

regulates liberation and remodeling of stored fats during develop-
ment of a lipogenic phenotype, and it is highly expressed in
aggressive and primary human cancers. MAGL regulates a fatty acid
network signaling that promotes tumor growth, migration, and
invasion [Nomura et al., 2010]. Palmitic acid (palmitate) stimulates
AKT phosphorylation and glucose uptake [Pu et al., 2011]. However,
a fatty-acid synthesis is increased in cancer [Mashima et al., 2009].
Fatty acids from lipolysis are used for the ATP production through
the acyl-CoA and beta-oxidation generating acetyl-CoA and NADH
in liver mitochondria. However, in the peripheral tissue more acetyl-
CoA is generated from the ketone bodies where from hydroxybu-
tyrate by the beta-hydroxybutyrate dehydrogenase generates
acetoacetate and NADH and then the succinyl-CoA/acetoacetate-
CoA transferase activates the transfer of acetoacetate to acetoacetyl
CoA and then by the thiolase to the acetyl-CoA [Baynes and
Dominiczak, 2007]. Glucose 6-phosphate dehydrogenase regulates
the G6P oxidation in the pentose phosphate pathway [McGilvery and
Goldstein, 1983; Mathews and Holde, 1989]. An aerobic glycolysis
yields considerably more ATP than anaerobic glycolysis. ATP
molecules are used for the generation of the NADH, cell migration by
cytoskeleton, synthesis of macromolecules, RNA, and DNA. Also,
ATP is signaling molecule and it is recognized by the purinergic
receptor. ATP is crucial for phosphorylation of the signaling proteins
and kinases. ATP-dependent ubiquitination is crucial for protein
degradation in proteasome. ATP and NADH are the elements that are
highly used for growth and cancer progression. A cancer phenotype
formation is the energy dependent, an entropy/enthalpy process.
However, phosphorylation of signaling proteins and signal trans-
duction are enthalpy processes [Espinoza-Fonseca et al., 2008].

Pyruvate kinase catalyzes reaction of phosphoenolpyruvate with
ADP and phosphorus to generate the ATP. Experimental confirmation
is maid by the Liu and colleagues, where metabolic switch from
aerobic glycolysis to the mitochondrial oxidative phosphorylation is
achieved by the oleanolic acid, suppressing aerobic glycolysis in
cancer cells and inducing a switch frompyruvate kinaseM2 (PKM2) to
the PKM1 [Liu et al., 2014], through the mTOR signaling pathway,
which is downstram of the AKT locus [Radisavljevic and Gonzalez-
Flecha, 2004; Radisavljevic, 2004a, 2008, 2013a,b,c]. Aerobic
glycolysis is activated through the VEGF/AKT/PKM2 in ovary
granulosa cancer cell [Schmidt et al., 2008]. It has been found
coexpression of pyruvate kinase M2 and pAKT in tumor glycolysis of
breast cancer [Benesch et al., 2010]. In human hepatocellular
carcinoma is observed upregulation of PKM2 expression in the
AKT-dependent manner [Nemazanyy et al., 2013]. Progression of
hepatocellular carcinoma was induced via AKT activation and PKM2
pathway [Wang et al., 2012]. Pyruvate kinase M2 (PKM2) is
upregulated through the PI3K/AKT/mTOR signaling pathway in
aerobic glicolysis during the tumor growth [Sun et al., 2011]. Aerobic
glycolysis promotes tumorgrowth inhumanglioblastomamultiforme
through the AKT and hexokinase 2 (HK2) signaling [Wolf et al., 2011].
In thehighly glycolytic cancer phenotypeHK2binds both theATPand
the glucose producing the glucose-6-phosphate [Mathupala
et al., 2006]. Cancer cells use AKT locus as an adaptive locus for
new aerobic glycolytic condition. The AKT locus is metabolic switch
from mitochondrial oxidative phosphorylation to aerobic glycolysis
through the AKT, mTOR [Radisavljevic, 2004a, 2008], and pyruvate
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kinase M2 signaling pathway [Liu et al., 2014] for the purpose of
generating energy-ATP. ATP synthase-b subunit (ATPSb) over-
expression increases intracellular and extracellular ATP content,
which increases phosphorylated AKT levels [Wang et al., 2014]. Thus,
cancer cell have high glycolysis, and high lipolysis for the high energy
demand, because they need to produce high amount of ATP to keep
active AKT for cancer cell proliferation, migration, angiogenesis, and
cancer progression [Radisavljevic et al., 2000; Radisavljevic, 2004a,b,
2008, 2013a,b,c]. Also, cancer cell needs to produce high amount of
the NADH for generation of the fatty acyl-CoA to increase fatty acid
synthesis and ATP production.

Autophagy is a catabolic process when cell digests own internal
elements to generate energy [Levine, 2005; Yang and Klionsky, 2010;
Kimmelman, 2011; Gewirtz, 2014]. Cancer cells using autophagy for
survival and progression [Gewirtz, 2014]. Additional ATP production
canbemade fromproteolysis of the cancer patient ownproteinswhich
is part of cancer cachexia, a cancer paraneoplastic syndrome
[Muscaritoli et al., 2006], where glucogenic amino acids are degraded
to pyruvate, and ketogenic amino acids are degraded to acetyl-CoAor
acetoacetate [Baynes and Dominiczak, 2007]. A cancer has adaptive
phenotype with ability to switch and use all available sources for
energy generation including glucose, fatty acids, or proteins if
necessary for the ATP production to maintain active AKT as a main
locus for cancer progression. Targeting phosphorylated AKT locus by
the oxidant/antioxidant balance change [Radisavljevic, 2004a, 2008]
induces conversion of the positive feedback loops into negative
feedback loops [Radisavljevic, 2013a,b,c] and disappearance of the
cancer phenotype.

CONCLUSION

A cancer phenotype is generated from the cancer hypoxic micro-
environment by the positive feedback loops. Signaling phenotype is
built from such microenvironment creating signaling interactome
networks causing hyperphosphrorylation and hyperactivation of the
AKT, which activating other genes above their activity threshold,
forms genomic phenotype and participates in formation of the
morphological, and metabolic cancer phenotype. A cancer has high
energy demand for the ATP to keep phosphorylated and active the
AKT in formation and maintenance of the malignant phenotype.
AKT as a main locus for cancer progression is activated by switching
to the aerobic glycolysis, lipolysis, or proteolysis. AKT locus
regulates cancer phenotype by the short, wide, and autostream
positive feedback loops. Targeting AKT locus by the antioxidant/
oxidant balance change leads to the positive feedback loops
conversion and disappearance of the malignant phenotype.
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